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Computer Networking is all about 
moving data

• The way in which data movement is controlled is a key characteristic of 
the network architecture

• The Internet protocol passed all controls to the end systems, and
treated the network as a passive switching environment

• But that was many years ago, and since then we have seen the 
deployment of active middleware in networks and control traffic flows 

• All this is changing again as we see a new generation of flow control 
algorithms being adopted in the Internet

• Lets look at one of the more interesting initiatives: Bottleneck Bandwidth 
and Round-Trip Time (BBR)

2



Let’s talk about speed

• How fast can we push a single session to move data 
through the network?

• Session speed is the result of  a combination of: 
• available transmission speeds, 
• end-to-end latency and 
• protocol efficiency

– All of these factors are critical
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The Evolution of Speed
1980’s

– TCP rates of Kilobits per second
1990’s

– TCP rates of Megabits per second
2000’s

– TCP rates of Gigabits per second
2010’s

– TCP rates of Gigabits per second
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Today

• Optical transmission speeds are approaching Terrabit
capacity

• But peak TCP session speeds are not keeping up
• What’s going on?

5



TCP

• The Transmission Control Protocol is an end-to-end 
protocol that creates a reliable stream protocol from the 
underlying IP datagram device

• TCP operates as an adaptive rate control protocol that 
attempts to operate fairly and efficiently



TCP Design Objectives

To maintain an average flow which is Efficient and Fair
• Efficient:

– Minimise packet loss
– Minimise packet re-ordering
– Do not leave unused path bandwidth on the table!

• Fair:
– Do not crowd out other TCP sessions
– Over time, take an average 1/N of the path capacity when there are N 

other TCP sessions sharing the same path



It’s a Flow Control process

• Think of this as a multi-
flow fluid dynamics 
problem

• Each flow has to gently 
exert pressure on the 
other flows to signal 
them to provide a fair 
share of the network, 
and be responsive to 
the pressure from all 
other flows



How can we achieve this?



TCP Control

TCP is an ACK Pacing protocol

Data sending rate is matched to the 
ACK arrival rate 



TCP Control

ACK pacing protocols relate to a past network state, not 
necessarily the current network state

– The ACK signal shows the rate of data that left the network at the 
receiver that occurred at ½ RTT back in time

– So if there is data loss, the ACK signal of that loss is already ½ RTT 
old!
• So TCP should react quickly to ‘bad’ news

– If there is no data loss, that is also old news
• So TCP should react conservatively to ‘good’ news



“Classic TCP” – TCP Reno

• Additive Increase Multiplicative Decrease (AIMD)
– While there is no packet loss, increase the sending rate by One 

Segment (MSS) each RTT interval
– If there is packet loss decrease the sending rate by 50% over the 

next  RTT Interval

• Start Up
– Each RTT interval, double the sending rate
– We call this “slow start” – probably because its anything but slow!!!



Idealised TCP Reno

Time

Slow Start
Rate Doubles
each RTT
Interval

Congestion Avoidance
Rate increases by 1 MSS per RTT
Rate halves on Packet Loss

Notification of Packet Loss 
via Duplicate ACKs causes 
RENO to halve its sending 
rate



Reno is too slow
• TCP Reno tries to oscillate between sending rates R and 2 x R

that span the actual link capacity

• It increases its sending rate slowly so it’s really lousy when trying 
to run at very high speed over long delay networks

• It over-corrects on loss and leaves available path capacity idle
– 10Gbps rates over 100ms RTT demands a packet loss rate of less than 

0.000003% 
– An average 1% loss rate over a 100ms RTT can’t operate faster than 

3Mbps



Faster than Reno?

• Could we make TCP faster and more efficient by changing 
the way in which the sending rate is inflated?



Refinements to TCP

• There have been many efforts to alter TCP’s flow control 
algorithm to improve on RENO

• In a loss-based control system the essential parameters are 
the manner of rate increase and the manner of loss-based 
decrease
– For example: 

MulTCP behaves as it it were N simultaneous TCP sessions: i.e. increase by N 
segments each RTT and rate drop by 1/N upon packet loss

• What about varying the manner of rate increase?



CUBIC

• CUBIC is designed to be useful for high speed sessions while still 
being ‘fair’ to other sessions and also efficient even at lower speeds

• Rather than probe in a linear manner for the sending rate that triggers 
packet loss, CUBIC uses a non-linear (cubic) search algorithm



CUBIC and Queue formation



CUBIC is today’s state of the art

• Can react quickly to available capacity in the network
• Tends to sit for extended periods in the phase of queue 

formation
• Can react efficiently to long fat pipes and rapidly scale up 

the sending rate
• Operates in a manner that tends to exacerbate ‘buffer bloat’ 

conditions 



Can we do better?
• Lets look at the model of the network once more
• There are three ‘states’ of flow management in this network:

– Under-Utilised – where the flow rate is below the link capacity and no queues form
– Over-Utilised – where the flow rate is greater that the link capacity and queues form 
– Saturated – where the queue is filled and packet loss occurs

• Loss-based control systems probe upward to the saturation point, and back 
off to what they guess is the under-utilised state in order to the let the 
queues drain

• But the optimal operational point for the flow is at the state change from 
Under to Over utilised



RTT and Delivery Rate with Queuing

Under-Utilised Over-Utilised Saturated



How to detect the onset of 

queuing?

• By carefully measuring the Round Trip Time!



BBR Design Principles

• Probe the path capacity only intermittently
• Probe the path capacity by increasing the sending rate for a short 

interval and then drop the rate to drain the queue:
– If the RTT of the probe equals the RTT of the previous state then there is 

available path bandwidth that could be utilised
– If the RTT of the probe rises then the path is likely to be at the onset of 

queuing and no further path bandwidth is available

• Do not alter the path bandwidth estimate in response to packet loss
• Pace the sending packets to avoid the need for network buffer rate 

adaptation



Idealised BBR profile

sending rate

network queues



BBR Politeness?

• BBR will probably not constantly pull back when 
simultaneous loss-based protocols exert pressure on the 
path’s queues

• BBR tries to make minimal demands on the queue size, 
and does not rely on a large dynamic range of queue 
occupancy during a flow



From Theory to Practice

• Lets use BBR in the wild
• I’m using iperf3 on Linux platforms (Linode) 

– The platforms are dedicated to these tests

• It’s the Internet
– The networks paths vary between tests
– The cross traffic is highly variable
– No measurement is repeatable to a fine level of detail



Cubic vs BBR over a 12ms RTT 10G 
circuit



Wow!

• That was BRUTAL!
• As soon as BBR started up it collided with CUBIC, and BBR 

startup placed pressure on CUBIC such that CUBIC’s 
congestion window was reduced  close to zero

• At this stage CUBIC’s efforts to restart its congestion 
window appear to collide with BBR’s congestion control 
model, so CUBIC remains suppressed
– The inference is that BBR appears to be operating in steady state 

with a relatively full network queue in order to crowd out CUBIC



BBR vs Cubic – second attempt

Same two endpoints, same 
network path across the public 
Internet

Using a long delay path AU to 
Germany via the US



BBR vs Cubic
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The Internet is capable of 
offering a 400Mbps capacity 
path on demand!

In this case BBR is apparently 
operating with filled queues, 
and this crowds out  CUBIC

BBR does not compete well 
with itself, and the two sessions 
oscillate in getting the majority 
share of available path capacity



BBR and Loss 
Recovery
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Packet loss causes 
retransmission that 
appears to occur in 
addition to the stable link 
capacity model used by 
BBR.

Once loss is reduced, BBR 
maintains a more 
consistent sending model



So what can we say about BBR?
It’s “interesting” in so many ways:

– It’s a move away from the more common loss-based flow control 
protocols

– It looks like it will operate very efficiently in a high-speed small-buffer 
world
• High speed small buffer chips are way cheaper, but loss-based TCP reacts 

really badly to small buffers by capping its flow rate
– It will operate efficiently over ECMP paths, as it is relatively impervious to 

packet re-ordering
– It also looks as if it will operate efficiently in rate policed environments
– Unlike AIMD systems, it will scale from Kbps to Gbps over long delay 

paths very efficiently
– It resists the conventional network-based traffic control mechanisms



Why use BBR?

• Because it achieves
• Its incredibly efficient
• It makes minimal demands on network buffer capacity 
• It’s fast!



Why not use BBR?

• Because it over achieves!

• The classic question for many Internet technologies is scaling 
– “what if everyone does it?”
– BBR is not a scalable approach
– It works so well while it is used by just a few users, some of the time
– But when it is active, BBR has the ability to slaughter concurrent 

loss-based flows
– Which sends all the wrong signals to the TCP ecosystem

• The loss-based flows convert to BBR to compete on equal terms
• The network is then a BBR vs BBR environment, which is unstable



Is this BBR experiment a failure?

Is it just too ‘greedy’ and too ‘insensitive’ to other flows to be 
allowed out on the Internet to play?

– Many networks have been provisioned as a response to the 
aggregate behaviours of loss-based TCP congestion control

– BBR changes all those assumptions, and could potentially push 
many networks into sustained instability

– We cannot use the conventional network control mechanisms to 
regulate BBR flows
• Selective packet drop just won’t create back pressure on the flow



Where now?

BBR 2.0
– Alter BBR’s ‘sensitivity’ to loss rates, so that it does not persist with an 

internal bandwidth delay product (BDP) that exceeds the uncongested BDP
This measure would moderate BBR 1.0’s ability to operate for extended periods with 
very high loss levels

– Improve the dynamic sharing fairness by moderating the Bandwidth Delay 
Product by using an estimated ‘fair’ proportion of the path BDP

– Accommodate the signal distortion caused by ACK stretching middleware
– Place an upper bound on the volume of in-flight data
– Alter the +/- 25% probe factors dynamically (i.e. allow this to be less than 

25% overload)



What about QUIC?

• Google has also announced QUIC as well as BBR
• QUIC essentially “hides” the TCP control settings from the 

underlying network using encryption
• Network middleware and control measures are not very 

effective when the transport control parameters are 
deliberately obscured
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The new Network Architecture

• We are seeing a shift away from network-level active
middleware back towards edge-centric control in the 
Internet

• QUIC and BBR are instances of a recent push back from 
the network-level QoS bandwidth control mechanisms, and 
result in greater levels of autonomous control being passed 
back to the end hosts
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What is all this telling us?
• The Internet still contains a large set of important unsolved 

problems
• Moving large data sets over high speed networks requires a 

different approach to what we are doing today
• BBR seems to be a big step in a useful direction for very 

high speed terrabit networking
• But it still calls for more research and more testing at scale
• And that’s where research networks can help!
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That’s it!

Questions?


